Interhemispheric Effective and Functional Cortical Connectivity Signatures of Spina Bifida Are Consistent with Callosal Anomaly
نویسندگان
چکیده
The impact of the posterior callosal anomalies associated with spina bifida on interhemispheric cortical connectivity is studied using a method for estimating cortical multivariable autoregressive models from scalp magnetoencephalography data. Interhemispheric effective and functional connectivity, measured using conditional Granger causality and coherence, respectively, is determined for the anterior and posterior cortical regions in a population of five spina bifida and five control subjects during a resting eyes-closed state. The estimated connectivity is shown to be consistent over the randomly selected subsets of the data for each subject. The posterior interhemispheric effective and functional connectivity and cortical power are significantly lower in the spina bifida group, a result that is consistent with posterior callosal anomalies. The anterior interhemispheric effective and functional connectivity are elevated in the spina bifida group, a result that may reflect compensatory mechanisms. In contrast, the intrahemispheric effective connectivity is comparable in the two groups. The differences between the spina bifida and control groups are most significant in the θ and α bands.
منابع مشابه
Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication.
The brain relies on interhemispheric communication for coherent integration of cognition and behavior. Surgical disconnection of the two cerebral hemispheres has granted numerous insights into the functional organization of the corpus callosum (CC) and its relationship to hemispheric specialization. Today, technologies exist that allow us to examine the healthy, intact brain to explore the ways...
متن کاملTranscallosal connectivity and cortical rhythms: findings in children with spina bifida.
We studied the relation between cortical oscillatory rhythms and the structural integrity of the corpus callosum in 21 children with spina bifida and hydrocephalus. Participants underwent resting state neuromagnetic recordings and diffusion tensor imaging. Areas of three segments of the corpus callosum (genu, body, splenium) were derived through diffusion tensor imaging-based morphometrics. Chi...
متن کاملAuditory interhemispheric transfer in relation to patterns of partial agenesis and hypoplasia of the corpus callosum in spina bifida meningomyelocele.
Spina bifida meningomyelocele with hydrocephalus (SBM) is commonly associated with anomalies of the corpus callosum (CC). We describe MRI patterns of regional CC agenesis and relate CC anomalies to functional laterality based on a dichotic listening test in 90 children with SBM and 27 typically developing controls. Many children with SBM (n = 40) showed regional CC anomalies in the form of agen...
متن کاملHow does the corpus callosum mediate interhemispheric transfer? A review.
The corpus callosum is the largest white matter structure in the human brain, connecting cortical regions of both hemispheres. Complete and partial callosotomies or callosal lesion studies have granted more insight into the function of the corpus callosum, namely the facilitation of communication between the cerebral hemispheres. How the corpus callosum mediates this information transfer is sti...
متن کاملBalanced Interhemispheric Cortical Activity Is Required for Correct Targeting of the Corpus Callosum
Bilateral integration of sensory and associative brain processing is achieved by precise connections between homologous regions in the two hemispheres via the corpus callosum. These connections form postnatally, and unilateral deprivation of sensory or spontaneous cortical activity during a critical period severely disrupts callosal wiring. However, little is known about how this early activity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain connectivity
دوره 2 3 شماره
صفحات -
تاریخ انتشار 2012